Visit our website and contact us today to see how we can make you smile.
1001 Nut Tree Rd, Ste 230
Vacaville, CA 95687
707-453-1776
Visit our website and contact us today to see how we can make you smile.
1001 Nut Tree Rd, Ste 230
Vacaville, CA 95687
707-453-1776
Bridges are a series of crowns linked together to strengthen teeth that are weak. They are also used to replace missing teeth. Bridges are used to give you a great smile with no spaces and allow you to function properly.
Visit our website and contact us today to see how we can make you smile.
1001 Nut Tree Rd, Ste 230
Vacaville, CA 95687
707-453-1776
Visit our website and contact us today to see how we can make you smile.
1001 Nut Tree Rd, Ste 230
Vacaville, CA 95687
707-453-1776
Dr. Burton graduated from Seaside High School, Seaside, CA in 1972. She earned her B.A. in biology from Yale University in 1976, and received her D.D.S. from New York University in 1980.
For more than 20 years, Dr. Burton has been providing high quality dental care with a gentle touch. She has practiced at the letterman Army Medical Center for the Department of Defense and she was clinical professor at Beth Israel Hospital and with the Children’s Aid Society in New York City.
Dr. Burton opened Regency Dental in 1995. She completed the Straight Wire Institute for orthodontic certification and the University of Phoenix Business Academy. She continues to attend various seminars and classes to stay informed and keep up to date on all the latest treatment techniques. One of her goals is to change people’s perception of dentistry by providing options to make dental care non-threatening and as pain free as possible.
Dr. Burton is very interested in the community and donates time and resources to school children and children’s sports teams in Vacaville, as well as participating in the Smiles For Life foundation charity every year for the last 10 years. She and her team have helped raise $4 million to help children’s charities across North America.
The absence of third molars is very common, occurring in 20–23% of the population, followed in prevalence by the second premolar and lateral incisor.
Anodontia is a complete lack of tooth development. It is rare, most often occurring in a condition called hypohidrotic ectodermal dysplasia.
Hypodontia is a lack of some tooth development (not including third molars). It is one of the most common developmental abnormalities, affecting 3.5–8.0% of the population. Hypodontia is often associated with the absence of a dental lamina, which is vulnerable to environmental forces like infection and chemotherapy medications. It is also associated with many syndromes, such as Down syndrome and Crouzon syndrome.
Hyperdontia is the development of extraneous teeth. It occurs in 1–3% of Caucasians and is more frequent in Asians. About 86% of these cases involve a single extra tooth in the mouth, most commonly found in the maxilla, where the incisors are located. Hyperdontia is believed to be associated with an excess of dental lamina.
Dilaceration is an abnormal bend found on a tooth, and is nearly always associated with trauma that moves the developing tooth bud. As a tooth is forming, a force can move the tooth from its original position, leaving the rest of the tooth to form at an abnormal angle. Cysts or tumors adjacent to a tooth bud are forces known to cause dilaceration, as are primary (baby) teeth pushed upward by trauma into the gingiva where it moves the tooth bud of the permanent tooth.
Enamel hypoplasia or hypomineralization is a defect of the teeth caused by a disturbance in the formation of the organic enamel matrix, clinically visible as enamel defects. It may be caused by nutritional factors, some diseases (such as undiagnosed and untreated celiac disease, chicken pox, congenital syphilis), hypocalcemia, fluoride ingestion, birth injury, preterm birth, infection or trauma from a deciduous tooth. In some circumstances enamel hypoplasia can be so severe that last sections of enamel is missing, exposing the underlying dentin.
Some systemic conditions may cause delayed tooth development, such as nutritional factors, endocrine disorders (hypothyroidism, hypopituitarism, hypoparathyroidism, pseudohypoparathyroidism), undiagnosed and untreated celiac disease, anemia, prematurity, low birth weight, renal failure, heavy metal intoxication or tobacco smoke, among others.
Regional odontodysplasia is rare, but is most likely to occur in the maxilla and anterior teeth. The cause is unknown; a number of causes have been postulated, including a disturbance in the neural crest cells, infection, radiation therapy, and a decrease in vascular supply (the most widely held hypothesis). Teeth affected by regional odontodysplasia nevAmelogenesis imperfecta is an autosomal dominant disease characterized by a defect in dental enamel formation. Teeth are often free of enamel, small, misshapen, and tinted brown. The cause of these deformities is due to a mutation in enamel in expression. Dental patients with this disease should be especially cautious and visit their dentist frequently.
Natal and neonatal teeth are an anomaly that involves teeth erupting in a newborn infant's mouth earlier than usual. The incidence ranges from 1:2,000 to 1:3,500 births. Natal teeth are more frequent, approximately three times more common than neonatal teeth. Some authors reported a higher prevalence in females than males. The most common location is the mandibular region of the central incisors. Natal teeth and neonatal teeth are associated with genetics, developmental abnormalities and certain recognized syndromes. Additional names for this condition include precocious dentition, baby teeth, and milk teeth.
As in other aspects of human growth and development, nutrition has an effect on the developing tooth. Essential nutrients for a healthy tooth include calcium, phosphorus, and vitamins A, C, and D. Calcium and phosphorus are needed to properly form the hydroxyapatite crystals, and their levels in the blood are maintained by Vitamin D. Vitamin A is necessary for the formation of keratin, as Vitamin C is for collagen. Fluoride, although not a nutrient, is incorporated into the hydroxyapatite crystal of a developing tooth and bones. The dental theory is the low levels of fluoride incorporation and very mild fluorosis makes the tooth more resistant to demineralization and subsequent decay.
Deficiencies of nutrients can have a wide range of effects on tooth development. In situations where calcium, phosphorus, and vitamin D are deficient, the hard structures of a tooth may be less mineralized. A lack of vitamin A can cause a reduction in the amount of enamel formation.
Fluoride ingestion has been noted to delay eruption of teeth for as much as a year or more from the accepted eruption dates since the initial 1940s fluoridation trials. Researchers theorize that the delay is a manifestation of fluoride's depressing impact on thyroid hormones. The delay in eruption has been suggested as the reason for the apparent difference in decay among the youngest children. Fluoride ingestion during tooth development can lead to a permanent condition known as fluorosis with varying levels of severity, the result of fluoride's interference with the normal osteoblast development.
Undiagnosed and untreated celiac disease often causes dental enamel defects and can be the only manifestation of the disease, in absence of gastrointestinal symptoms or malabsorption signs.
Bisphenol A (BPA) is a hormone-disrupting chemical that has been implicated in having negative effects on human health, including, but not limited to, fetal development. As shown in animal studies which mimic human enamel, the mother's consumption of products with BPA during pregnancy can lead to the child's tooth development being obstructed. Those children are shown to be prone to incisor and first molar hypomineralization, a weakened state of the enamel. Additionally, it is most important for mother's to avoid BPA during pregnancy, but also avoid BPA-use in the child's products up to five months of age.
Crowns cover and strengthen broken or decayed teeth. Crowns look natural and give you a healthy smile. When the size of a filling exceeds a certain proportion of the tooth, it must be replaced with a cap also called a crown. Porcelain crowns look very natural and don’t have a dark metal line. They reflect light with a natural healthy glow. Porcelain crowns can make even the ugliest teeth look like a movie star smile!
New CEREC™ Restoration System
We now offer the newest in permanent restoration technology! With the new CEREC™ system, we can do crowns, onlay and inlay restoration procedures in just one office visit saving you both time and money!
Tooth eruption occurs when the teeth enter the mouth and become visible. Although researchers agree that tooth eruption is a complex process, there is little agreement on the identity of the mechanism that controls eruption. Some commonly held theories that have been disproven over time include: (1) the tooth is pushed upward into the mouth by the growth of the tooth's root, (2) the tooth is pushed upward by the growth of the bone around the tooth, (3) the tooth is pushed upward by vascular pressure, and (4) the tooth is pushed upward by the cushioned hammock. The cushioned hammock theory, first proposed by Harry Sicher, was taught widely from the 1930s to the 1950s. This theory postulated that a ligament below a tooth, which Sicher observed under a microscope on a histologic slide, was responsible for eruption. Later, the "ligament" Sicher observed was determined to be merely an artifact created in the process of preparing the slide.
The most widely held current theory is that while several forces might be involved in eruption, the periodontal ligaments provide the main impetus for the process. Theorists hypothesize that the periodontal ligaments promote eruption through the shrinking and cross-linking of their collagen fibers and the contraction of their fibroblasts.
Although tooth eruption occurs at different times for different people, a general eruption timeline exists. Typically, humans have 20 primary (baby) teeth and 32 permanent teeth. Tooth eruption has three stages. The first, known as deciduous dentition stage, occurs when only primary teeth are visible. Once the first permanent tooth erupts into the mouth, the teeth are in the mixed (or transitional) dentition. After the last primary tooth falls out of the mouth—a process known as exfoliation—the teeth are in the permanent dentition.